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ABSTRACT 
Researchers are encouraged to report statistics in their studies, including measures of effect size and 
confidence intervals (CIs).  The probability of superiority (A) has many appealing characteristics, such as 
being robust to parametric assumptions, easy to understand, and generalizable.  While A was originally 
created to compare scores from two discrete groups, extensions of the statistic have been created to allow 
researchers to use A for correlated samples, as well as for more than two conditions.  Former research on 
methods for creating confidence intervals for A suggests the use of bootstrap methods, which can be used 
for each variation of calculating A.  The use of bootstrapping methods for calculating CIs and the various 
extensions of A have been brought together to create a package, RProbSup, which allows users to easily 
calculate different variations of A, its standard error (SE), and CI.  This paper illustrates how to use 
RProbSup and highlights the benefits of using these statistical methods.   
 
INTRODUCTION 
The American Psychological Association advises researchers to report measures of effect size in their 
studies (APA, 2010) to indicate the magnitude of difference between groups.  To choose an appropriate 
effect size, researchers must consider the scale, size, variability, and normality of their data, as well as the 
effect size’s ability to clearly communicate its meaning to the reader (Vargha & Delaney, 2000). Many 
commonly used measures of effect size for between-group comparisons, including the standardized 
mean difference (d) and the point bi-serial correlation (rpb), require parametric assumptions to be satisfied.  
In real world studies, it may be challenging or impossible to conform to these assumptions, such as if 
one’s data is discrete, weighted, or distributed asymmetrically.  
 McGraw and Wong (1992) advocated for the use of the common language effect size estimator 
(CL) as the solution to finding the most effective, accurate, and easy to understand effect size estimator 
when comparing scores across two groups.  Vargha and Delaney (2000) built on McGraw and Wong’s 
(1992) foundation with recommendations to use the probability of superiority, A, instead.  A is described 
as a nonparametric generalization of CL that is robust to the parametric assumptions and other factors.  

Ruscio (2008) described the benefits and limitations of commonly used effect size measures 
including the standardized mean difference (d), point bi-serial correlation (rpb), common language effect 
size indicator (CL), and measure of stochastic superiority, otherwise referred to as the probability of 
superiority (A).  Each effect size serves different functions.  For example, d compares two populations’ 
means on the dependent variable while rpb compares two populations’ correlations on the dependent 
variable.  A, a probability-based measure of effect size, is similar to CL in that they both measure the 
probability that a randomly chosen member of one group will perform better than a randomly chosen 
member of the other group.  However, A accounts for ties by awarding 0.5 credit where CL does not 
(Vargha & Delaney, 2000).  Ruscio (2008) promotes the use of the A statistic in the field of psychology due 
to its many merits including its ease of understanding, ability to be generalized, usefulness with ordinal 
data, and robustness to parametric assumptions, base rates, and outliers. 
 
OVERVIEW OF THE PROBABILITY OF SUPERIORITY 
The most commonly used effect size measures require some type of parametric assumptions to be met.  
Parametric assumptions include normally distributed data and homogeneity of variances, and these are 
not always approximated well with real-world data.  The probability of superiority, otherwise known as 
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the A statistic, is especially helpful due to its ability to be used without making parametric assumptions, 
allowing it to appropriately be used in many contexts and situations.  Ruscio and Gera (2013) explain 
how discrete data would violate parametric assumptions, thus using d or rpb would be inappropriate, 
whereas using A would be appropriate and effective.  Therefore, while other measures of effect size 
require continuous data, A is applicable for both continuous and discrete data.  A can also be useful when 
one has weighted data (Ruscio & Gera, 2013).  

To calculate A, one can use the formula provided by Vargha and Delaney (2000): A = P(X1>X2) + 
0.5P(X1=X2), where X1 and X2 are vectors of scores for two groups and P represents calculating the 
probability, as per standard probability theory notation.  The formula can be read as the probability that 
group one will score higher than group two, accommodating ties as half credit.  For example, in a medical 
study between a treatment group and a control group, an A statistic of 0.823 would indicate the treatment 
group is 82.3% more likely to score higher on the health assessment than the control group.  The bounds 
of the A statistic are 0 and 1.  If there exists no difference between the scores of two groups, this is 
equivalent to saying A = 0.5, which Vargha and Delaney (2000) refer to as stochastic equality. 
Alternatively, if there is a 100% chance that one group would score higher than the other group, A = 1.  
Calculating A is equivalent to finding the area under the receiver operating characteristic (ROC) curve 
(Ruscio & Mullen, 2012).  Therefore, when referring to the area under the ROC curve (AUC), one is still 
referring to the probability that a randomly selected member of one group scores higher than a randomly 
selected member of another group.  

While A was originally introduced to measure the probability of superiority for two discrete 
groups, variants of the formula have been established to extend the use of the statistic to other research 
designs.  One variation of A allows one to measure the probability of superiority for two correlated 
samples, rather than for two groups.  Vargha and Delaney (2000) manipulated the original formula so to 
measure A for two correlated samples one can use the formula  

A = [P(X1>X2) + 0.5P(X1=X2)]/n, 
where X1 and X2 are vectors of scores for two measures, rather than two groups, and n is the total number 
of participants.   

Vargha and Delaney (2000) introduced two additional variations of A: the average absolute 
deviation (AAD) and the average absolute pairwise deviation (AAPD).  AAD calculates A for research 
designs with more than two groups (Vargha & Delaney, 2000).  AAPD is another variation introduced by 
Vargha and Delaney (2000) to use when a research design has more than two groups, but the researchers 
want to analyze pairs of groups compared to all others, rather than each group independently.  Ruscio 
and Gera (2013) discuss two additional variations of A: Aik and Aord. Aik is used for singling out one group 
compared to all others while Aord is used to determine the extent to which scores seem to be rank-ordered 
(Ruscio and Gera, 2013).  AAD, AAPD, Aik, and Aord can all be applied for research designs utilizing 
groups or correlated samples. These four extensions of A allow it to be used for various research designs 
and in a multitude of fields. 

The American Psychological Association (APA) refers to reporting confidence intervals (CIs) as 
“the best reporting strategy” due to CIs’ abilities to reveal information about both location and precision 
(APA, 2010, p. 34).  Bootstrapping allows researchers to generate their own empirical sampling 
distribution by randomly drawing from the given sample the specified number of cases, with 
replacement (Ruscio & Mullen, 2012).  Ruscio and Mullen (2012) explain thoroughly the benefits of using 
bootstrap methods to construct a standard error (SE) or CI for A rather than analytical approaches.  The 
existing analytical approaches to constructing CIs treat the sampling distributions as if they are 
symmetric in shape, which would only be appropriate when A is 0.50 (Ruscio & Mullen, 2012).  Because 
bootstrapping methods generate their own sampling distributions, these methods can construct 
asymmetric CIs which can be more accurate.  Also, because analytic CIs are usually constructed as a point 
estimate ± 1.96 times the estimated SE, they might extend into theoretically impossible values (e.g., values 
< 0 or > 1 for the A statistic).  Bootstrap CIs cannot extend into impossible values.  For other variants of 
the A statistic (AAD, AAPD, AIK, and Aord) there are no analytical approaches to constructing SEs and CIs. 
Thus, accurate bootstrapping methods are even more significant for reporting statistics because, as of our 
current knowledge, it is the only way to do so.  
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OVERVIEW OF THE RprobSup.R PACKAGE 
To calculate A, its SE, and construct a CI for it, Ruscio (2012) created two sets of programs, A.R (2012) and 
Bootstrap CI for A.R (2012), which are described in Ruscio and Gera (2013) and Ruscio and Mullen (2012), 
respectively.  Both sets of programs have been available, free of charge, on Ruscio’s professional website 
(ruscio.pages.tcnj.edu).  The purpose of this project is combining the code into an R package, RProbSup.  
A benefit of this project is that distributing code through an R package rather than a professional website 
is accessible in a more conventional manner, and still free of charge, through the Comprehensive R 
Archive Network (CRAN).   
 
RProbSup STRUCTURE  
RProbSup consists of twenty-one functions, only one of which should be called directly by the user.  Users 
will provide their data through a matrix.  For a between-subjects design, the matrix must consist of cases 
(rows) by scores (column 1) and group codes (column 2). For a within-subjects design, the matrix must 
consist of scores with each sample in its own column. Next, the user will specify whether one is 
calculating the A statistic for two or more groups (between-subjects design) or for two or more correlated 
samples (within-subjects design) by calling 1 or 2 for the argument “design,” respectively.   There exist 
five variations of the A statistic: the fast calculation, the average absolute deviation (AAAD), the average 
absolute pairwise deviation (AAAPD), and when users want to single-out a group (Aik) or use ordinal data 
(Aord).  A user can specify which variation they are using in the argument “statistic” by selecting 1, 2, 3, 4, 
or 5, respectively.  RProbSup displays the A statistic and, using bootstrap methods, its estimated SE and a 
CI.  The default bootstrap method for each function is the bootstrap bias-corrected and accelerated (BCA) 
method, represented as 1 in the argument “ci.method”; however, users can also specify to use the 
bootstrap percentile (BP) method, by calling 2 for the argument “ci.method.”   
 
CALCULATING THE A STATISTIC, STANDARD ERROR, AND CONFIDENCE INTERVALS 
USING ‘RProbSup’  
 
FAST CALCULATION 
The A Statistic (A).  A1() and A2() calculate A and its SE and construct a CI for the A statistic for two 
groups and two correlated samples, respectively.  A user should not call A1() nor A2() directly, but 
instead use A() and specify which variation is to be used in the arguments “design” and “statistic.”  To 
calculate the A statistic, SE, and CI for two groups, one must first create a matrix consisting of the scores 
for groups (or samples, if using a between-subjects design) one and two to two columns; call this matrix 
data.  The first example indicates the calculation of the A statistic, SE, and CI for two groups by directing 
the function A()to call A1() by calling 1 for the argument “design.”  The second example demonstrates the 
calculation of  the A statistic, SE, and CI for two correlated samples by directing the function A()to call 
A2() by calling 2 for the argument “design.”  In both cases, the user must call 1, representing the fast 
calculation, for the argument “statistic.” In the first example, y1 and y2 represent the scores for groups 
one and two, whereas, in the second example y1 and y2 represent the scores for samples one and two. For 
users who may be new to using R, note cbind() combines data by columns, c() combines the arguments, 
and rep() replicates the first argument the number of times specified in the second argument.  
Understanding these basic R functions will be useful in understanding how A() functions.  
> y1 <- c(6, 7, 8, 7, 9, 6, 5, 4, 7, 8, 7, 6, 9, 5, 4) 
> y2 <- c(7, 5, 6, 7, 6, 4, 3, 5, 4, 5, 4, 5, 7, 4, 5) 
> data <- cbind(c(y1, y2), c(rep(1, length(y1)), rep(2, length(y2)))) 
> A(data, 1, 1) 
     A:  0.747  
    SE:  0.085  
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95% CI:  0.551 to 0.889 
An A value of 0.747 for two or more group using the fast calculation indicates that on average, there was 
a 74.7% chance that a randomly selected score from the first group was higher than a randomly selected 
score from the second group.  
> data <- cbind(y1, y2) 
> A(data, 2, 1) 
     A:  0.767  
    SE:  0.101  
95% CI:  0.5 to 0.9 
An A value of 0.767 for two or more correlated samples using the fast calculation indicates that on 
average, there was a 76.7% chance that a randomly chosen participant’s score for the first measure was 
higher than their score for the second measure. Notice that with the same data, the fast calculation for 
two groups compared to two correlated samples results in a different A value, SE, and CI. The difference 
in these values can be explained by how A is calculated differently for correlated samples; A is calculated 
by comparing scores of two measures and dividing by the total number of participants.  Because 
bootstrapping is used to create the SE and CI, a different approach to calculating A results in the creation 
of a new sampling distribution, thus changing the SE and CI.  
 
VARIATIONS OF A 
Average absolute deviation (AAD). One generalization of A introduced by Vargha and Delaney (2000) is 
the average absolute deviation (AAD).  One can study the extent of the differences among more than two 
groups by determining whether the scores in one group are different that the union of the scores of every 
other group by using AAD.  An A statistic is calculated for every group compared to all others, and the 
series of the calculated A statistic helps calculate the AAD, which represents the estimation of stochastic 
homogeneity for the sample (Vargha & Delaney, 2000).  To calculate the average absolute deviation, one 
can use the formula: 

 
where the number of groups is represented by k, the comparison group is represented by i, and each A 
statistic calculated for each i group compared to union of all others is represented as Aik (Ruscio & Gera, 
2013).  To further understand the derivation of the formula for AAD, see Vargha and Delaney (2000).  To 
calculate the AAD for two or more groups or two or more correlated samples, users will call A(data, 1, 2) 
or A(data, 2, 2), respectively, in RProbSup. Users will need a matrix of cases by scores and group codes or 

a matrix of scores with each sample in its own column, respectively. 
The following examples will demonstrate how to use RProbSup to calculate the AAD for two or 

more groups or samples and can be used as a guideline for the subsequent variations of RProbSup, as 
well.  The final basic function users will want to become familiar with is rnorm(), which generates the 
specified number of random values from the normal distribution (with default mean of 0 and standard 
deviation of 1). 
> set.seed(1) 
> x1 <- rnorm(25) 
> x2 <- x1 - rnorm(25, mean = 1) 
> x3 <- x2 - rnorm(25, mean = 1) 
> x.bs <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25))) 
> A(x.bs, 1, 2) 
     A:  0.721  
    SE:  0.029  
95% CI:  0.621 to 0.759 
An A value of 0.721 for the AAD for two or more groups indicates that on average, there was a 72.1% 
chance that a randomly selected score in one group was higher than a randomly selected score from the 
union of all other groups in the study.  
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> x.ws <- cbind(x1, x2, x3) 
> A(x.ws, 2, 2) 
     A:  0.793  
    SE:  0.023  
95% CI:  0.713 to 0.82 
An A value of 0.793 for the AAD for two or more correlated samples indicates that on average, there was 
a 79.3% chance that a randomly selected participant’s score for one measure was higher than a randomly 
selected score from the union of all other measures for that participant. 
 
Average absolute pairwise deviation (AAPD). Vargha and Delaney (2000) also introduced the average 
absolute pairwise deviation (AAPD).  In this generalization, the A statistic is calculated for each pair of 
groups, rather than each group individually as in AAD.  A similar process of AAD follows in that the A 
statistics gathered from each pair of groups is aggregated into a series which represents AAPD, 
representing pairwise stochastic homogeneity (Vargha & Delaney, 2000).  To calculate the average 
absolute pairwise deviation, one can use the formula:  

 
where each A statistic calculated for each i group compared each j group is represented as Aij (Ruscio & 
Gera, 2013).  To further understand the derivation of the formula for AAPD, see Vargha and Delaney 
(2000).  To calculate the AAPD in RProbSup, users need a matrix of cases by scores and group codes. 
> A(x.bs, 1, 3) 
     A:  0.807  
    SE:  0.041  
95% CI:  0.707 to 0.873 
An A value of 0.807 for the AAPD for two or more groups indicates that on average, there was an 80.7% 
chance that a score selected from a randomly chosen pair of scores was higher than a score from the 
union of all other pairs of scores.  
> A(x.ws, 2, 3) 
     A:  0.907  
    SE:  0.034  
95% CI:  0.787 to 0.947 
An A value of 0.907 for the AAPD for two or more correlated samples indicates that on average, there was 
a 90.7% chance that a randomly selected pair of scores for a participant was higher than a score from the 
union of all other pair of scores across the different measures for the same participant.   
 
IK. Ruscio and Gera (2013) discuss two additional variants of A.  One variant, Aik, is applicable when a 
user wants to single out one group and compare it to all others, differing from AAD as the union of the 
groups is treated as a pool of one sample (Ruscio & Gera, 2013).  To calculate this variant of A, one can 
use the formula, Pr(Yi>Y~i), where ~i represents the newly considered sample pool of each group without 
the comparison group, i (Ruscio & Gera, 2013).  To calculate Aik  in RProbSup, users need a matrix of cases 
by scores and group codes as well as specify the number of reference groups to compare to all others 
(default is 1). 
> A(x.bs, 1, 4) 
     A:  0.832  
    SE:  0.049  
95% CI:  0.704 to 0.906 
An A value of 0.832 while using the variation Aik for two or more groups indicates that on average, there 
was an 83.2% chance that a score from one group was higher than a randomly selected score from any 
other group.  
> A(x.ws, 2, 4) 
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     A:  0.94  
    SE:  0.032  
95% CI:  0.8 to 0.98 
An A value of 0.94 while using the variation Aik for two or more correlated samples indicates that on 
average, there was a 94% chance that a randomly selected participant’s score for one measure was higher 
than a score from any other measure.  
Ord. The final variation of the probability of superiority that users can calculate in RProbSup is useful in 
determining the “extent to which scores tend to be rank-ordered among groups” (Ruscio & Gera, 2013, p. 
215).  The A statistic is calculated for each pair of adjacent scores for all scores then the summation of the 
various A statistics is used in calculating the ordinal comparison among the groups (Ruscio & Gera, 
2013).  To calculate the ordinal variation of A one can use the following formula:  
[Pr(Y1>Y2)+Pr(Y2>Y3)+…+Pr(Yk-1>Yk)]/(k-1). 
To calculate Aord in RProbSup, users need a matrix of cases by scores and group codes. 
> A(x.bs, 1, 5) 
     A:  0.762  
    SE:  0.041  
95% CI:  0.67 to 0.834 
An A value of 0.762 while using the variation Aord for two or more groups indicates that on average, 
across all sequential comparisons, there was an 76.2% chance that a score in one group was higher than 
the score in the subsequent group. 
> A(x.ws, 2, 5) 
     A:  0.88  
    SE:  0.041  
95% CI:  0.76 to 0.94 
An A value of 0.88 while using the variation Aord for two or more correlated samples indicates that on 
average, across all sequential comparisons, there was an 88% chance that a randomly selected 
participant’s score in one measure was higher than the score for the subsequent measure.  
 
CREATING CONFIDENCE INTERVALS USING BOOTSTRAP METHODS 
Ruscio and Mullen (2012) recommend using the bootstrap percentile (BP) method, as well as the 
bootstrap bias-corrected and accelerated (BCA) method.  Both the BP and BCA methods are empirical 
methods for constructing CIs.  Rather than estimating the parameters, a sample is treated as an unbiased 
estimate of the population (Ruscio & Mullen, 2012).  A large number of bootstrap samples are created by 
drawing new samples of equal size, with replacement, from the original data. Next, one performs the 
desired analysis on each bootstrap sample. The process is repeated many times, providing a large number 
of values to be compiled into an empirical sampling distribution.  In particular, the BP method identifies 
values at the 2.5th percentile as well as the 97.5th percentile of the newly create empirical sampling 
distribution to construct the limits of a 95% CI (Ruscio & Mullen, 2012).  The BCA method is similar to the 
BP method.  However, the BCA method  accounts for skewness in the distribution and adjusts these 
limits accordingly (Ruscio & Mullen, 2012).   

When compared to other empirical and analytical methods, the BCA method was found to be 
superior due to its robustness to various population characteristics such as distribution shape and 
unequal variances (Ruscio & Mullen, 2012).  The BCA method constructed the highest mean percentage 
of coverage for the CI, resembling the 95% CI that many statisticians are familiar with (Ruscio & Mullen, 
2012).  That is, the CIs produced by the BCA method contained the real A value for the population 94.4% 
of the time, indicating a very accurate CI.  Because the BCA method is the most robust method and most 
accurately constructs a CI for the A statistic, Ruscio and Mullen (2012) recommend using the BCA method 
to construct CIs and calculate SE for the A statistic.  

Better to understand the difference between the BCA and BP methods, let us consider the 
following sample data from Ruscio and Mullen (2012): 

y1 = (6, 7, 8, 7, 9, 6, 5, 4, 7, 8, 7, 6, 9, 5, 4) 
y2 = (4, 3, 5, 3, 6, 2, 2, 1, 6, 7, 4, 3, 2, 4, 3) 
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Let y1 represent the scores for group one and let y2 represent the scores for group two.  When one 
specifies for the program to use the percentile (BP) method (represented by 2), RProbSup will display the 
following results: 
> data <- cbind(c(y1, y2), c(rep(1, length(y1)), rep(2, length(y2)))) 
> A(data, 1, 1, ci.method = 2) 
     A:  0.884  
    SE:  0.058  
95% CI:  0.756 to 0.976 
Constructed using percentile method with B = 1999 bootstrap samples 
When calculating the A statistic for the two groups using the default method for constructing CIs, the 
BCA method (represented by 1), RProbSup will display the following results: 
> A(data, 1, 1) 
     A:  0.884  
    SE:  0.058  
95% CI:  0.718 to 0.964 
Constructed using BCA method with B = 1999 bootstrap samples 
Notice how using the BCA method results in a different CI with adjusted endpoints than the CI 
calculated when using the BP method.  The difference between the CIs can be explained by the fact that 
the BCA method accounts for the skewness in the data (Ruscio & Mullen, 2012).  Notice, specifying which 
bootstrapping method to use adjusts the CI and does not affect the calculation of A nor the SE.  Ruscio 
and Mullen (2012) concluded in their simulation study that the BCA method performed the best when 
compared to the BP method and other empirical and analytical methods for constructing CIs for A. 
  
CONCLUDING REMARKS AND FUTURE DIRECTIONS 
The American Psychological Association requires researchers to report measures of effect size to 
accompany their statistical tests, including SEs and CIs (APA, 2010).  It is common practice for 
researchers to use Cohen’s d or the rpb to compare scores for two groups even when parametric 
assumptions may be violated.  Instead, the probability of superiority may be a more appropriate measure. 

 McGraw and Wong (1992) highlighted the benefits of using the common language effect size 
estimator (CL) due to its ease of generalizing its results and explaining its significance to those not trained 
in statistics.  Vargha and Delaney (2000) introduced a measure of stochastic superiority (A).  Ruscio (2008) 
reviewed the benefits of using the probability of superiority, Ruscio and Gera (2013) highlight the various 
uses of the A statistic in different contexts, and Ruscio and Mullen (2012) show how to estimate its SE and 
construct CIs for it. 

The programs created to accompany the work of Ruscio and Gera (2012) and Ruscio and Mullen 
(2012) have been condensed to be represented in one single R package, titled RProbSup (2018) (available at 
https://CRAN.R-project.org/package=RProbSup).  Users can specify which variation of A the user 
would like the A statistic calculated for, as well as be given the SE and CI for this statistic using 
bootstrapping methods.  It is our hope that investigators can now easily and effectively take advantage of 
the code in a user-friendly manner.   
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