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ABSTRACT   

One of the most impactful discoveries within the fields of astronomy and astrophysics over the last few 
decades was the discovery of planets, outside our solar system, orbiting stars other than our own. These 
planets are referred to as exoplanets or as extrasolar planets. Since the discovery of exoplanets, scientists 
have searched the cosmos for signs of life on these alien worlds. A great portion of exoplanetary 
discoveries and data comes through the analysis of light spectra, with the help from advancing space 
telescope technology. By analyzing the spectra of numerous exoplanets, it has been determined that the 
combined presence of several biochemical gases (most notably CO2, H2O, and O3) within an atmosphere 
greatly increases the probability of there being life on that planet. It has also been concluded that the 
presence of liquid water on an exoplanet may have a profound, positive impact on the planet’s ability to 
sustain life. These conclusions allow scientists to narrow their search for exoplanets to regions around a 
star which physically promote the presence of liquid water. Numerous computer simulations have 
resulted in there being an estimated one solar system out of every twenty containing a planet with the 
necessary physical conditions to sustain liquid water. 

INTRODUCTION 

This paper concerns the use and analysis of spectroscopic data from telescopes to determine the chemical 
compositions of various exoplanets in order to ascertain whether or not a planet is capable of sustaining 
life. Methods for analyzing spectroscopic data of a planet’s atmosphere will be examined in helping 
further understand whether or not a planet is habitable. The technology used to determine such data will 
be briefly touched upon. Favorable chemical compositions of exoplanetary atmospheres will also be 
discussed along with a brief look at the variables encountered within a solar system which have ability to 
alter the desired atmospheric chemical compositions. To properly discuss exoplanets, one must first delve 
into the principal discovery of a planet outside of our solar system. 

51 PEGASI B  

In October of 1995, during a conference in Florence, Italy, Michel Mayor of the University of Geneva and 
Didier Queloz, a doctoral student, presented their findings of a large, gaseous planet (a gas giant) orbiting 
around a main sequence star—the first such planet to ever be discovered (Mayor and Frei, 2003). The star, 
designated 51 Pegasi (51 Peg), is relatively unremarkable. It is a sun-like star—middle-aged and average-
sized—which can be found within the northern constellation, Pegasus.  The planet in question, 51 Pegasi 
b, is said to be around the size and mass of Jupiter, except it lives at a much closer distance away from 51 
Peg than Jupiter does from our Sun (Mayor and Queloz, 1995). This raised questions about the then 
accepted processes of planetary formation. 

 51 Peg b was discovered through a technique which measures variations in a star’s radial 
velocity. These variations are resulted from one or more high-mass planetary objects (i.e. a gas giant) 
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orbiting around the star. At the time, only large, gaseous planets were able to be detected. Nowadays, 
due to advancements in technology and technique, more terrestrial planets are able to be detected. 

THE QUEST FOR LIFE 

Before Mayor and Queloz made their discovery in 1995, some people considered the opinion that our 
solar system, and by extension our planet, was unique. Many were growing doubtful that life throughout 
the universe was common. Following the confirmation of the existence of an extrasolar planet orbiting 
around 51 Pegasi (Marcy and Butler, 1995) scientists began to wonder whether the apparent prevalence of 
planetary systems in the universe meant that life on other planets was more common than we thought. 

 In the present day, current reports show the discovery of over 3400 extrasolar planets since 1995.1 
During the course of each discovery there are two questions scientists ask themselves. (1) Does this 
exoplanet exist with the necessary conditions to sustain life? If the first question is answered with ‘yes’, 
(2) does this exoplanet harbor life or signs of life’s existence? During the course of this paper, both 
questions will be discussed in order to better understand the search for extraterrestrial life. 

DISCUSSION: METHODS OF ANALYSIS   

Over the past two decades, significant advancements in technology and methodology have allowed 
researchers to believe in the possibility of someday finding life in the universe and confirming that we are 
not alone. To begin our search for life, we must first understand what the mechanisms are which create 
life. The search for life involves thousands of people from different backgrounds and fields of study to 
form an interdisciplinary team of researchers who all share the same goal. Astrophysicists work with 
biologists, who work with chemists, and so on. Finding life does not necessarily mean finding sentient 
beings with complex brain functions. Primarily, scientists are focusing on finding primitive life—that 
which consists of the most basic life forms. As is evident on Earth, life can exist in many forms and 
survive in many conditions, but a lot of research is being done to isolate worlds that share some of the 
same characteristics as the Earth. One characteristic that is unique to our planet’s ability to sustain life is 
its atmosphere. Other planets in our solar system have atmospheres, like Venus and Jupiter, but only the 
Earth’s atmosphere is capable of harboring life in our solar system (to our knowledge). 

SPECTROSCOPY 

Before we discuss the necessary chemical and physical conditions a planet needs to sustain life, we must 
first detail the methods and techniques for determining an exoplanet’s atmospheric properties. One such 
technique analyzes the light spectrum of transiting extrasolar planets in order to determine the chemical 
composition of the atmosphere (see Figure 1). Because of the nature of detecting exoplanets, spectroscopy 
was primarily done on large, Jupiter-like gas giants, even as recently as 2013 (Deming et al., 2013). The 
first detection of an exoplanet’s atmosphere occurred in 2002 (the optical sodium absorption lines of the 
transiting planet. 

 Traditionally speaking, analyzing the spectrum of an object in space by a telescope was primarily 
done on stars. In an ideal situation, the light spectrum of a star will appear unblemished. It will contain 
every color of the rainbow with smooth transitions from one color to the next. In a more realistic 
spectrum of a star, there appear to be black bands in random locations, where colors do not necessarily 
transition smoothly to the next. This is due to some wavelengths of light being disrupted by molecules in 
the stellar atmosphere, hence, a particular color on the spectrum may seem ‘missing’. What is actually 
happening is that each element or molecule present in the atmosphere absorbs a specific wavelength of 
light. Therefore, the imperfections in a light spectrum of a star actually tell us about that star’s chemical 
composition in its atmosphere. The same process is used to determine the chemical composition of 
exoplanetary atmospheres, except with much more difficulty (especially for a terrestrial planet). We 
detect the majority of exoplanets through the transiting method, i.e. as the planet is moving in front of the 
host star. Therefore, the vast majority of light intake by our telescopes comes from the star itself, not the 
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planet. Techniques for distinguishing the exoplanet’s light spectrum from that of the star are used in 
order to get a better sense of an exoplanet’s atmospheric composition. 

 According to a mission called Darwin (Cockell et al., 2009), to differentiate the signal of a small, 
Earth-like, terrestrial planet from that of the much more massive host star, the planet must be spatially 
resolved. This simply is a process which differentiates between light at different distances, which improves 
the quality of the image. The degree of resolution is determined by the quality of the imaging device 
aboard the telescope, as well as the quality of the imaging software on the ground (Deming et al., 2009). 

Taking observational data from a space telescope as opposed to a ground telescope is preferable 
in this case due to the interference by spectral data obtained from the Earth’s atmosphere when using a 
und-based telescope. 
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Charbonneau et al.) and was done using the Hubble Space Telescope (HST) to analyze 

Figure 1: Spectral observations of water absorption for two different 
transiting, terrestrial exoplanets. Upper panel: For a planet with T = 506 K 
and R = 2.1 Earth-radii at a distance of 32 pc. Lower panel: For a planet with 
T = 302 K and R = 1.8 Earth-radii at a distance of 20 pc. © Deming et al., 
2009. 
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TECHNOLOGICAL ADVANCEMENTS 

Since the first discoveries of exoplanets in the mid to late 1990’s, technological advancements have 
enabled scientists to see clearer images at larger distances than ever before. The closest exoplanets found 
to date can be located around our nearest stellar neighbor, Alpha Centauri, at a distance of 1.3 parsecs 
away (Demory et al., 2015). Conversely, the farthest known exoplanet has been found in the galactic 
bulge, at around 8500 parsecs away (Sahu et al., 2007). This is akin to being able to see—from a New York 
City apartment—a person living across the street in a different apartment building, as well as being able 
to see a person living in their apartment in Albuquerque, New Mexico. This may begin to illustrate the 
current minimum and maximum relative distances at which we are able to detect extrasolar planets. 

HUBBLE SPACE TELESCOPE 

Used during the first exoplanetary discovery by Mayor and Queloz (1995), the Hubble Space Telescope 
remains one of the most widely used space telescopes in the 21st century. HST was deployed in 1990 with 
the ability to see in the range of 100 nm to 2500 nm, which includes ultraviolet, visible, and infrared 
radiation. Hubble’s optical resolution is 0.05 arcseconds which is more than one order of magnitude 
better than many ground-based telescopes, due to interference with Earth’s atmosphere. On board HST 
there are a total of six scientific instruments, including cameras, spectrographs, and fine guidance sensors 
which all allow for amazing images at near or far distances (HubbleSite, 2016). 

KEPLER SPACE YELESCOPE 

The mission of the Kepler Space Telescope (KST) is to find extrasolar planets, specifically Earth-like 
terrestrial planets within the Milky Way Galaxy. KST was launched in 2009 with the ability to see in the 
range of 400 nm to 850 nm, which mostly consists of visible light. Kepler’s optical resolution is 
approximately 10 arcseconds which makes it 200 times less focused than the HST, but this is to ensure the 
precision of the optical systems on board. The KST primarily focuses on one patch in the sky, monitoring 
around 150,000 stars for planets. This ensures the stability of the telescope while taking images (NASA, 
2016). 

JAMES WEBB SPACE TELESCOPE 

Set to launch in October of 2018, the mission of the James Webb Space Telescope (JWST) is wide-ranging. 
It will image everything from remnants of the Big Bang to solar system formation with the hope of 
furthering our understanding of the universe. JWST will have the ability to see in the range of 600 nm to 
28500 nm, which consists of some visible light, but mostly infrared radiation. The key aspect of the 
telescope’s future success will depend largely on its IR capabilities. A new technology, called a 
microshutter array was created by a team of scientists and allows 100 objects to be observed 
simultaneously. Webb’s optical resolution is approximately 0.1 arcseconds, which is smaller than that of 
Hubble, but its ability to capture light from 100 sources at the same time greatly make up for its slightly 
diminished resolution. The microshutter arrays paired with advanced coronagraphs will allow JWST to 
gather more data on exoplanets and solar systems than ever before.  It will also contain a number of other 
innovations in space telescope technology, including a folding, segmented mirror which will allow 
controllers on the ground to better focus the optics while the system is in orbit. JWST will make good use 
of the largest optical mirror to ever be launched into space as it ushers in a new era in space telescope 
technology (NASA, 2016). 

DISCUSSION: ATMOSDPHERIC PROPERTIES 

In order to begin talking about the search for life on other worlds, one must first understand the basic 
definition of life itself, and the conditions necessary for it to exist. In discussing the biological concept of 
life, Cockell et al. (2009) use Brack’s definition of life (2007) by stating, “A living being is a system that 
contains information and is able to replicate and evolve through random mutation and natural 
(Darwinian) selection”.   
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 As was mentioned previously, some life on Earth has the ability to survive in the harshest 
conditions, at least according to human standards. There is no evidence to suggest that this does not hold 
true throughout the grand scope of the universe. Many scientists, however, have made the decision to 
conduct their research with the assumption that life exists throughout the universe in much the same way 
it exists on Earth. That is, life on other worlds mostly requires liquid water and is primarily carbon-based, 
but this is not to say that it cannot exist under other conditions (Léger et al., 1996). It is worth noting, 
however, that any gas which is not in equilibrium within the constraints of the chemistry of an 
exoplanet’s atmosphere may suggest the presence of life (Cockell et al., 2009). 

CHEMICAL CONDITIONS 

There is only one true example researchers have when discussing planetary habitability, and that is the 
Earth (Beckwith, 2008). Earth is the only planet we know for certain able to foster and sustain life. 
Therefore, we look to the Earth as a generic model from which to possibly confirm or deny an extrasolar 
planet’s ability to produce life (see Figure 2). With this in mind, astrobiologists, chemists, physicists, etc. 
look for the atmospheric signatures of life on other worlds which are similar to those found on Earth. 

 

TRIPLE SIGNATURE 

There are three gases found in the Earth’s atmosphere which can appear most commonly during 
biological processes—oxygen (O2), carbon dioxide (CO2), and water vapor (H2O).2 If these gases are found 
to be present in the atmosphere of an exoplanet, then there may be a possibility that these are signs of life, 
however primitive it may be. Nevertheless, this statement is not entirely true. It is true that Earth-like life 
on another planet will produce relatively the same chemicals in the atmosphere. It is false, however, that 

the individual presence of O2, CO2, H2O, or others in a planetary atmosphere corresponds with the 

Figure 2: The lower line is a synthetic representation of what the Earth’s spectrum would look like in the 
present day, from a distance of 10 pc. The upper line is a combination of the solar irradiance and a Planck 
function at 286 K. © Beckwith, 2008. 
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presence of life. It has been shown that through some abiotic, photochemical processes, life-signature 
gases—such as O2 (Selsis et al., 2002) and CH4 (Swain et al., 2008)—can be produced in both terrestrial and 
gaseous exoplanetary atmospheres (see Figure 3). One way to tell, with minimal uncertainty due to false 
positive results, that there has been photosynthetic life on an exoplanet is to find the presence of all three 
of the above gases in the atmosphere (Selsis et al., 2002). The presence of these three gases is known as the 
triple signature and is often represented as CO2—H2O—O3 IR.3 Ozone (O3) is used due to it being a 
signature of an O2-rich environment. 

In atmospheres created by primitive lifeforms, CO2 is the most prevalent gas. Therefore, an 
indication of life could be shown if the level of CO2 was reduced by photosynthesis, and O2 levels were 
correspondingly increased (Léger et al., 1996). It is stated by Léger et al. that a presence of up to 1000 mbar 
of O2 in an exoplanetary atmosphere would be a strong indication of primitive life. It should be noted 
that experimentally, a relatively high O2 content (~50 mbar) can be produced abiotically through 
geochemical means (Selsis et al., 2002). 
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LIQUID WATER 

Although there is no absolute certainty that the individual presence of any one molecule in an exoplanet 
corresponds to the presence of life (Selsis et al., 2002), it is still not wrong to believe that the presence of 

liquid H2O may provide a higher possibility of life’s existence. Again, the only true reference scientists 
have is the Earth and the planetary neighborhood in which it resides (Beckwith, 2008). With this in mind, 
scientists take the relationship between life on Earth and the presence of liquid water on the surface very 
seriously when considering the sustainability of life on other planets. Going back to Léger et al. (1996), it 
can be assumed that the majority of life is carbon-based and requires liquid water to survive. Therefore, 
the ability of a planet to sustain liquid water may be an important first step toward the goal of producing 
life.  

 Through simulations involving data from GJ581d and others (Wordsworth et al., 2011), it was 
concluded that an atmosphere with over 1 x 104 mbar of CO2 (along with varying amounts of other gases) 

Figure 3: The most important reactions 
for abiotic production of O2. © Selsis et 
al., 2002. 
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produced a global mean temperature above 0 ˚C, resulting in the sustainability of liquid H2O.4 It was also 
concluded that the presence of other greenhouse gases and/or clouds of H2O in the atmosphere can have 
an effect on the overall surface temperature of the planet, but as long as the atmosphere is in geochemical 
equilibrium the temperature should be above the freezing point of H2O. 

PHYSICAL CONDITIONS   

It has been demonstrated that a number of possible chemical conditions can lead to signatures of 
extraterrestrial life, but there are a number of physical factors involved which determine if those 
conditions can exist. Without the relatively precise physical conditions, a planet may not have any chance 
to produce or sustain Earth-like life. Three of the most commonly analyzed conditions, which have the 
ability to alter the desired chemical composition of an exoplanetary atmosphere, include the energy 
output of the star, the size of the planet, and the planet’s distance away from the star. Once again, we 
look at the Earth in relation to the solar system for inspiration. 

 As is evident in our solar system, these three factors can vary depending on the planet’s 
atmospheric composition as well as on the values of the others. Venus, for example, is approximately the 
same size of the earth, closer to the sun, yet its atmosphere is denser than Earth’s due to the amount of 
greenhouse gases present. Mars, on the other hand, is farther away from the sun, yet contains a much 
thinner atmosphere compared to the Earth due to its smaller size and lack of a strong magnetic field. 
Conversely, the size of gas giants, Jupiter and Saturn, and their distances away from the sun allow for the 
retention of gases and the buildup of substantial atmospheres. 

 These are all examples of dependency the factors have on one another, but a closer look at the 
latter two will help to further understand what scientists are looking for in the search for habitable 
exoplanets. 

Habitable Zone 
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Any planet which supports Earth-like life must satisfy two broad criteria: (1) it must have surface 
temperatures (T) capable of sustaining liquid water (0 < T < 100 ˚C), and (2) it must contain an 
atmosphere. The first item is satisfied if the planet is located within the habitable zone (HZ) (Beckwith, 
2008). The habitable zone can be defined as the region around a star in which life-supporting planets can 
exist (Kasting et al., 1993). Popularly, the HZ is often referred to as the Goldilocks zone, due to it being the 
region where the temperature is neither ‘too hot’ nor ‘too cold’, rather ‘just right’ for liquid water to exist 
on the surface (see Figure 4). For our own solar system, Kasting et al. estimate the HZ to be between 0.95 
and 1.37 AU, although the realistic width’s value may be greater. Through the use of computer models, 
the lower limit to the HZ is determined by the loss of water through photolysis and hydrogen escape—
with the latter being dependent on the mass of the planet. The upper limit of the HZ is determined by 
CO2 cloud formation, which increases the albedo and cools the planetary surface. Over time, the HZ 
migrates away from the star because solar luminosity increases with age. 

 

EARTH-SIZED PLANETS 

The second of Beckwith’s criteria (2008) is satisfied if the planet is rocky in nature and has enough mass 
to retain its atmosphere. It is estimated that a planet has the ability to retain its atmosphere when it has 

mass (M) in the range 0.5 < M < 10 Earth-masses. Planets smaller than 0.5 Earth-masses will not have 
Figure 4: The estimated evolution of the H2O, O3, and CO2 features in the spectra of an Earth-like planet 
as a function of its location in the HZ. Shown are the wavelengths in which the Darwin project is 
interested. © Cockell et al., 2009. 
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enough gravitational attraction to capture their atmospheres. Planets larger than 10 Earth-masses will 
accrete gas to become gas giants. 

 Many of the terrestrial planets that have been discovered are more massive than the Earth, 
therefore closer to the upper mass limit discussed above. These planets are classified as super-Earths and 
have an approximate mass range 2 < M < 10 Earth-masses (Wordsworth et al., 2011). After conducting 
numerous simulations, Deming et al. (2009) came to the conclusion that the number of Earth-size 
exoplanets exceeds the amount of Jupiter-size exoplanets. The simulations concluded that approximately 
30% of stars have at least one Earth-like or super-Earth-like planet orbiting around them. There was also 
found to be a ~5% likelihood that an Earth-like or super-Earth-like planet exists in the HZ of any given 
star. With the number density of stars in the Milky Way Galaxy alone, 5% could result in a substantial 
number of candidates for habitable exoplanets. 

CONCLUSION 

One of the most important scientific discoveries over the last two decades was the discovery of a planet, 
orbiting a member star of the Pegasus constellation, around 50 light-years away (Mayor and Queloz, 
1995). Since 1995, the search for extraterrestrial life has become a central theme in the scientific 
community, and will continue to drive scientific advancement during the 21st century (Léger et al., 1996). 
Before the 1990’s, it was beginning to look more and more as if the Earth was unique, that is, life was an 
exceedingly rare phenomenon which humans were lucky to be a part of. Significant advancements in 
technology and refinement of technique have renewed our hope of finding extraterrestrial life. 

 By studying stars closely with various telescopes, we have currently located and classified more 
than 3400 extrasolar planets. From the first exoplanetary discovery (Mayor and Queloz, 1995) to some of 
the most recent, the Hubble Space Telescope continues to play a major role in detecting exoplanets. With 
the perennial help of HST, along with KST, and eventually JWST, and others, more and more exoplanets 
will be discovered in the quest for finding extraterrestrial life. 

 Through the use of spectroscopy, we are able to analyze exoplanets for signatures of life. 
Biochemical processes on Earth produce a number of different gases, including CO2, H2O, and O3, among 
others. Although the presence of any individual gas mentioned does not necessarily correspond with the 
presence of life, the presence of all three gases—known as the triple signature (CO2—H2O—O3 IR)—can 
significantly increase the likelihood of life existing on that planet. Also, in a more primitive atmosphere, 
the decrease of CO2 and the increase of O2 can also indicate the presence of life due to photosynthesis 
(Selsis et al., 2002). 

 Another sign of life’s existence is the ability of an exoplanet to sustain liquid water. Through 
various simulations, it was concluded that H2O can remain in a liquid state if the atmosphere contained 
over 1 × 104 mbar of CO2, along with varying levels of other gases (Wordsworth et al., 2011). In order to 
keep the surface temperature of a planet above the freezing point and below the boiling point of liquid 
H2O, it must be located within the habitable zone of a solar system. In order to contain an atmosphere—
which is also needed for planetary habitability—a planet needs to be terrestrial in nature, and have a 
mass in the range 0.5 < M < 10 Earth-masses. This ensures that the planet’s gravitational pull is great 
enough to hold on to the gases which make up the atmosphere, yet not so great as to accrete too much gas 
(Beckwith, 2008). 

 Simulations performed by Deming et al. (2009) have concluded that there are more Earth-like 
planets than Jupiter-like planets in the galaxy. There was also found to be a ~5% chance that any given 
star will have at least one Earth-like planet within the HZ. When compared to the sheer number of stars 
located within the Milky Way Galaxy, this percentage, albeit small, shows that there exists the possibility 
for a massive number of habitable exoplanets. This means that in just over two decades, the scientific 
community went from thinking of the possibility that the Earth is unique (or at least rare), to there being 
a realistic probability of the existence of habitable extrasolar planets. Extending this line of thought, in 
just twenty years, the question of finding evidence of extraterrestrial life went from ‘if’ to ‘when.’ 
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1 Cataloged by The Extrasolar Planets Encyclopedia. 
2 In a broader look at life on Earth and elsewhere, gases CH4 and NH3 may also be found. 
3 The triple signature can be found in the infrared spectrum from λmin ≈ 6 µm to λmax ≈ 17 µm due to the 
difficulty of detecting O3 with other wavelengths (Léger et al., 1996; Selsis et al., 2002). 
4 GJ581d orbits a red dwarf Gliese 581 for which M = 0.31 Earth-masses and L = 0.0135 Earth-luminosities. 


